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Globally, hypertension is estimated to affect 40% of adults and cause 7.5 million deaths, 
approximately 12.8% of all deaths [1]. And the rate of hypertension control is still exceptionally low. 
There is strong evidence to suggest a causal relationship between salt intake and high blood pressure. 
Salt sensitivity is an independent risk factor for cardiovascular disease (CVD) and mortality, which 
is present in half of the hypertensive population and one quarter of the normotensive subjects [2,3]. 
Additionally, despite the unquestionable influence of environmental factors in the determination of 
salt sensitivity in humans, estimates of its heritability have been as high as 74% in blacks and 50% 
in Chinese subjects, both higher than those for hypertension [4].

Salt sensitivity is especially frequent in normotensives from subpopulations known to have 
a higher frequency of hypertension, such as blacks, older subjects, and first-degree relatives of 
hypertensives, suggesting that salt sensitivity is a predictor of hypertension [4,5]. Investigating the 
causes of salt sensitivity will contribute to finding new drugs for hypertension. With respect to the 
pathophysiology of salt sensitivity, the relative roles of abnormal vascular resistance responses to salt 
loading [6-9] versus abnormal sodium-volume responses to salt loading [10-13] are controversial. 
Most studies in normotensive subjects have indicated that the initiation of salt-induced hypertension 
usually involves abnormal vascular resistance responses to increased salt intake, not greater renal 
retention of a salt load in salt-sensitive normotensive subjects than in salt-resistant normotensive 
controls [14-18]. Salt sensitive hypertensive subjects also do not retain more of a salt load than salt 
resistant normotensive controls [19], although they may retain more of a salt load than salt-resistant 
hypertensive subjects [20].

According to the Guyton theory, kidney plays the central role in the regulation of blood 
pressure (BP) via renal pressure natriuresis. He provides a framework that could be adapted to 
future findings, in which a high-salt diet engenders sodium accumulation, volume expansion, 
cardiac output adjustments, and then autoregulation for flow maintenance are involved. According 
to the Guyton theory, an abnormal increase in the amount of renal salt reabsorption/retention is 
usually an early, critical abnormality that enables increased salt intake to initiate hypertension [21]. 
However, in a series of carefully performed studies, Greene et al. clearly showed that increased 
dietary salt intake expanded blood volume and increased cardiac output (CO) in the Brookhaven 
strains of both Dahl salt sensitive (SS) and salt resistant (SR) rats, but only in the SS rats did BP 
increase [11]. Consistent with the clinical study, Luft et al. [21,22] showed that high salt intake 
increased CO and decreased peripheral vascular resistance (PVR) in normotensive men. Schmidlin 
et al. [14,15] also observed, despite similar increases in CO and cumulative sodium balance, that 
SS but not SR individuals manifested salt-induced increases in mean arterial pressure. The SR 
volunteers showed rapid reductions in calculated systemic vascular resistance (SVR), whereas SVR 
did not decline and actually increased over time in the SS patients. These data suggest that the 
ability of individuals to respond with an appropriate vasodilatory response to increased salt intake 
is pivotal. 

In Guyton’s era, nitric oxide (NO) and natriuretic peptides were unknown and prostaglandin 
function had only been sketchily outlined. The vascular stress dilation is not well known. Two 
excellent reviews have discussed the effects of NO on renal epithelial cell regulation of salt and 
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water balance [23], renal hemodynamics [24] and the relationship 
with arterial pressure. Roman [25] showed a rightward shift in the 
pressure-natriuresis curve in prehypertensive Dahl SS rats. This 
defect in pressure-natriuresis was repaired by chronic administration 
of L-arginine [26]. NOS polymorphism and decreased NOS activity 
is reported common in blacks or aging people, who are high in 
the prevalence of salt-sensitive hypertension [27-29]. Salt-sensitive 
individuals release less NO during NO agonist administration 
compared with salt-resistant essential hypertension individuals [30]. 
Theses indicate that NO plays a vital role in salt sensitivity. 

NO in the kidney could be derived from any isoform of NO 
synthase (NOS) [22]. It has been reported that NO derived from 
neuronal nitric oxide synthase (nNOS) plays a role in the regulation 
of afferent arteriolar diameter and long- and short-term tubule 
glomerular feedback [31]. Whole body eNOS knockout mice 
showed a high basal mean BP (125 ± 4 mm Hg) with a further 
increase in BP after excess salt intake [32]. Therefore, we used low-
dose N-nitro-L-arginine Methyl Ester (L-NAME) to systemically 
inhibit all subunits of NOS to induce salt sensitivity. The dose of 
L-NAME does not elevate blood pressure per se nor induce renal 
fibrosis. Other studies revealed that high dose L-NAME (25 mg/kg/
day of L-NAME, 25 times higher than what we have used) could 
induce salt-sensitive hypertension even after cessation of L-NAME 
[33,34]. But that model causes severe renal parenchymal fibrosis and 
possibly impairs renal sodium handling secondary to fibrosis. They 
suggested that renal damage and activation of renin-angiotensin axis 
[34] are the causes of salt-sensitive hypertension in that model. In 
our former study, we showed no apparent renal parenchyma damage, 
whilst keeping the rodents normotensive unless high-salt diet is 
given. The results suggest that this low dose of L-NAME induces 
salt-sensitivity in normotensive animals even in the absence of renal 
parenchymal damage [35].

During the first 24 hours of salt loading, blood volume increased 
to the same extent in the LNAME-treated group and control group. 
However, blood pressure increased only in the LNAME group. The 
blood pressure changes appear earlier than that in blood volume. This 
finding demonstrated that elevated blood volume is not sufficient 
for the initiation of hypertension. The results raise the possibility 
that within the first 24 hours of salt loading, the L-NAME+HS 
animals failed to normally vasodilate and reduce systemic vascular 
resistance in response to the salt-loading and blood volume 
expansion. In contrast, the normal controls may have responded to 
the same degree of salt-induced volume expansion by vasodilating 
and reducing systemic vascular resistance which prevents the salt-
induced increases in blood volume from increasing blood pressure. 
We revealed that by using this model, although the circulating 
blood volume is comparable between salt-sensitive and salt-resistant 
rodents, only the salt-sensitive model developed hypertension 
within 24 hours on a high salt diet. The results highly suggested 
that elevated blood volume is not sufficient for initiation of the salt-
sensitive hypertension on a day after high salt intake. It suggests that 
a failure of vasodilatation in response to volume expansion induces 
salt sensitivity. Kurtz et al. contend Guyton hypothesis that instead 
of a natriuretic shortcoming, the problem is vascular dysfunction in 
the form of a failure to reduce peripheral resistance to accommodate 
the increased volume that provokes the BP rise in salt sensitivity 
[36-38]. And the decrease in blood volume was associated with an 
increase in urinary sodium excretion, which is consistent with data 
in human. It suggests that to maintain salt-sensitive hypertension, 

sodium retention and increases in blood volume are necessary.

L-NAME changes renal blood flow [39] and to exclude the 
microenvironment changes in the kidney, we examined the effect 
of L-NAME and NO in vitro using mDCT cells in which eNOS 
is expressed. Blockade of NO in mDCT cells with L-NAME and 
treatment with sodium nitroprusside (SNP) altered phosphorylation 
of thiazide-sensitive sodium-chloride co-transporter (NCC) and 
these data suggest that NO interacts with phosphorylation of NCC. 
It is well known that L-NAME results in high oxidative stress [40], a 
result which was also confirmed by analyzing superoxide levels in the 
present study. After co-treatment with a superoxide dismutase (SOD) 
mimetic TEMPO, the L-NAME-induced increases in p-NCC was 
downregulated. pSPAK, a classic activator of NCC, phosphorylate 
NCC at conserved Ser/Thr residues in the cytoplasmic N-terminal 
domain [41]. In the study, the expression of pSPAK was also 
increased by L-NAME stimulation and downregulated by TEMPO 
+ L-NAME co-treatment in mDCT cells. At the same time, NO 
donor decreased superoxide levels and pSPAK expression in mDCT 
cells. To confirm the role of pSPAK, we inhibited pSPAK and 
subsequently demonstrated the failure of L-NAME to activate NCC 
in the presence of a pSPAK inhibitor. Furthermore, we demonstrated 
the role of ROS in NO-induced salt-sensitive hypertension in vivo. 
After 4 weeks of treatment, TEMPO attenuated the L-NAME- and 
salt-induced increases in superoxide levels, mean BP and p-NCC 
expression in the C57BL/6J mice. These results indicate that 
oxidative stress and pSPAK play a role in the interaction between 
NO and NCC. 

However, in our study, we did not measure the serum sodium 
balance. Although we observed that a decrease in blood volume 
was associated with an increase in urinary sodium excretion in salt 
resistant group, and there is a sodium retention in salt sensitive 
group. Where is the excessive sodium loss, is still unclear? Guyton’s 
hypothesis is based on the premise that all mechanisms of salt 
handling are geared toward maintaining sodium excretion parallel to 
sodium intake (ie, achieving constant salt balance). However, it has 
been reported recently that healthy humans are able to osmotically 
inactivate a significant proportion of sodium after an infusion of 
hypertonic saline [22,42]. Recent observations by Laffer question 
this conventional knowledge: sodium can be stored in hyperosmolar 
concentrations (or at least without iso-osmolar water) in certain 
tissues such as skin and muscle, with a behavior different from that in 
the extracellular space [43]. This osmotically inactive sodium storage 
could therefore serve as a mechanism for buffering volume and blood 
pressure following changes in salt intake [44]. Skin sodium appears 
to be higher in older individuals, which previously was known to 
have the salt sensitivity trait. Titze et al. showed that skin sodium 
changes during dialysis support its role as a buffer system [18,21-
22]. Higher skin sodium storage in aging is associated with higher 
BP and target organ damage. The possible mechanism involves 
VEGF-C, which determines skin sodium in aging, potentially via 
lymphangiogenesis, facilitating the efflux of sodium [38].

In this COVID-19 pandemic era, the vascular dysfunction is 
more often observed than before. Postmortem examination of 
COVID-19 patients reveals that virus-like particles were present in 
endothelial cells and proximal tubular epithelial cells [45], which 
indicate a high probability to develop salt sensitivity. As COVID-19 
virus induces cytokine-storm and damages vascular endothelial cells 
and renal tubules. The COVID-19 survivors are reported to have 
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several left-over symptoms such as dyspnea and dysgeusia. Although 
there is no survey on newly diagnosed hypertension among 
COVID-19 survivors, the endothelial damages last for several 
month and when survivors take high salt diet, they may develop salt-
sensitive hypertension. The health care providers should pay high 
attention to reduce salt intake and keep eyes on blood pressure. 

In conclusion, mild impairment of NO activity might be an 
important determinant of vascular resistance and blood volume 
responses to salt loading that mediate the initiation and maintenance 
of salt-induced hypertension. Certainly, more work is needed to 
understand the underlying pathobiology of the effects of high salt in 
the context of salt sensitive hypertension.
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