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Posttraumatic stress disorder (PTSD) is a highly debilitating psychiatric condition that develops 
in a subset of individuals following a traumatic event, such as a threat of death, serious injury 
or sexual assault [1]. Over the past two decades, substantial body of research has focused on key 
neural regions and circuits that play a role in pathogenesis and maintenance of PTSD symptoms 
[2,3]. More specifically, hyper-activation of amygdala, insula, and dorsal anterior cingulate cortex, 
as well as hypo-activation in ventral medial prefrontal cortex and altered function of hippocampus 
have been repeatedly reported [4,5]. Moreover, PTSD has been consistently found to be associated 
with increased functional connectivity within Salience Network (SN; linked to threat and salience 
detection with key nodes in dorsal anterior cingulate cortex, insula/operculum and amygdala) 
[3,6], decreased connectivity within Default-Mode Network (DMN; linked to mind wandering, 
autobiographical memory and self-referential processes and comprised of posterior cingulate cortex, 
ventral medial/subgenual prefrontal cortex and hippocampus) [3,7], as well as with functional SN-
DMN desegregation (i.e., greater inter-network connectivity) [3,8,9]. Alterations in connectivity 
patterns of SN and DMN with other networks such as Frontoparietal Network (FPN) and attention 
networks, have also been reported in PTSD. Specifically, increased connectivity between SN and 
ventral and dorsal attention networks (VAN and DAN, respectively) [8], decreased connectivity 
between DMN and Frontoparietal Network [10,11], as well as increased connectivity between SN 
and Frontoparietal Network [9] (Table 1).

Notably, much of the literature is based on a comparison of PTSD patients to non-trauma-exposed 
controls, which raises the question of the effect of trauma exposure itself on the reported neural 
patterns. Studies that did include trauma-exposed controls and compared them to PTSD patients, 
have been mainly utilizing a two-group design, without analyzing non-trauma-exposed controls [12-
15]. As such, findings from these studies contribute to the knowledge of PTSD mechanisms, but not 
to the understanding of the neural correlates of trauma exposure per se. In the next paragraphs of 
the commentary, we will summarize the existing literature on effects of trauma on functional neural 
patterns, discuss it in relation to the alterations reported in the PTSD literature, and focus on a 
recent study from our group which included a three-group design (PTSD patients, trauma-exposed 
and non-exposed controls). We will then discuss the significance of these findings, what they could 
teach us about vulnerability and resilience mechanisms and how they could guide research design and 
treatment approaches.

 To date, empirical evidence of functional neural changes associated with traumatic exposure is 
rather limited. Several studies demonstrated elevated activity of regions of SN (insula, dorsal anterior 
cingulate cortex and amygdala), as well as greater within-SN connectivity (between amygdala and 
insula), as linked to experiencing trauma [16-19]. In this context, van Marle et al. [20] and our 
group [3] proposed that greater within-SN connectivity following acute psychological stress may 
underline the sustained state of hypervigilance. Studies that investigated acute stress and related 
changes in functional connectivity patterns showed that stress-induction is associated with increased 
within-SN connectivity and decreased within-DMN connectivity [21]. Interestingly, trauma-exposed 
controls were found to exhibit altered within-DMN connectivity compared to non-trauma-exposed 
controls, a connectivity which was also associated with dissociation symptoms after trauma [19,22]. 
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Furthermore, trauma-exposed controls displayed increased activity in 
regions of the prefrontal cortex (part of DMN), relative to both non-
trauma-exposed and PTSD groups [23,24], although lower activity 
in both trauma-exposed controls and PTSD groups compared to a 
non-trauma-exposed group was also shown [24,25]. Trauma-exposed 
controls were also found to be associated with greater connectivity 
between regions of prefrontal cortex and ventral striatum, which 
has been linked to anhedonia symptoms [26,27]. Further research 
is needed to clarify effects of trauma exposure on DMN and other 
networks, as well as on symptoms and behavioral responses that occur 
in the aftermath of trauma. Notably, a three-group design, involving 
a group of trauma-unexposed healthy controls is particularly useful, 
as it allows to distinguish between effects of trauma exposure per se, 
from those associated with PTSD development. 

A recent study by our group utilized a three-group design, 
examining the neural correlates of trauma exposure in a non-treatment 
seeking adolescent population during resting-state functional MRI 
[28]. There, we indeed replicated some of the findings previously 
reported in PTSD patients (e.g., lower within-DMN and greater 
SN-DMN connectivity), but also highlighted the effect of trauma 
exposure on neural function. Specifically, trauma-exposed controls 
exhibited greater within-SN connectivity, compared to non-trauma-
exposed controls. The trauma-exposed group also showed greater 
connectivity between SN and DAN (specifically, between amygdala 
and superior parietal lobule), as well as lower connectivity between 
DMN and DAN (between hippocampus and middle frontal gyrus). 
Interestingly, these patterns were not different between adolescents 
with PTSD symptoms and the trauma-exposed non-PTSD group, 
suggesting that these altered connectivities are likely the result of 

a traumatic exposure itself. The altered connectivity with DAN 
similarly suggests that trauma exposure may drive some of the altered 
connectivity with attention networks reported in PTSD [29]. 

Alterations that are found in both trauma-exposed individuals 
and in PTSD patients could represent vulnerability factors, which 
increase risk to develop symptomatology, in conjunction with other 
factors that are absent in the trauma-exposed group alone. Such is 
the greater within-SN connectivity [3,6,30-32]. Greater within-SN 
connectivity after a stressful event is also consistent with prior trauma 
literature [20,33], and could represent a state of hypervigilance 
that could increase risk to develop PTSD after subsequent trauma. 
Similarly, the finding of greater SN-DAN connectivity after trauma 
[28] is consistent with a neural alteration reported in PTSD patients 
and could relate to disrupted attention reported in these patients 
[29]. Interestingly, trauma exposure in this study was associated 
with lower DMN-DAN connectivity [28], a pattern not seen in 
PTSD patients. It is possible that this represents a better segregation 
of the DMN and DAN, that could serve as a protective factor or 
mechanism of resilience, protecting trauma-exposed individuals 
from PTSD development. Further research of PTSD patients and 
trauma-exposed individuals is needed to better understand both 
the pathophysiologic and the adaptive processes involved in PTSD 
development.

Importantly, while the Sheynin et al. study utilized a cross-
sectional design [28], ideally, future research will also utilize a 
prospective longitudinal approach. If participants could be recruited 
at the time or even before the trauma (identifying high-risk 
population), it will help to pinpoint the pre-existing vulnerability 
factors, isolating them from trauma and disorder-related underlying 

FPN
dLPFC, vLPFC

VAN
IFG, TPJ

DAN
MFG, PPC, FEF

SN
Amy, Insula, dACC

DMN
vmPFC, PCC, Hpc

DMN
Autobiographical memory
Mind wandering
Self-referential processing

 
  

  [10,11] - -  

 

 

 [3,8,9]  
  

 [3,7]

SN
Threat detection  

 

 

[9]  

 

 

 [8]  

 

 

[8]  

 

 

 [3,6]  

DAN
Top-down voluntary 
orienting

- - -

VAN
Alerting
Reorienting attention to 
unexpected stimuli

- -

FPN
Top-down control 
emotional regulation

-

Table 1: Summary of dysregulations of large-scale networks in PTSD.

Arrows illustrate increased or decreased within or between-network connectivity in individuals with PTSD compared to healthy controls. Dashes 
illustrate lack of consistent findings on PTSD-related alterations in connectivity patterns within and between specific large-scale networks. Amy: 
Amygdala; dACC: Dorsal Anterior Cingulate; FEF: Frontal Eyes Fields; Hpc: Hippocampus; IFG: Inferior Frontal Gyrus, MFG: Middle Frontal Gyrus; 
PCC: Posterior Cingulate Cortex; PPC: Posterior Parietal Cortex; TPJ: Temporal Parietal Junction; vmPFC, dlPFC, vlPFC: ventromedial, dorsolateral, 
ventrolateral Prefrontal Cortex.
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mechanisms. Longitudinal assessments at multiple time points 
would be beneficial not only to better understand the process of 
PTSD development, but also to establish causative links that are 
not possible based on cross-sectional data alone. For instance, by 
studying individuals pre and post exposure to stressful events during 
a military service, Admon et al. found that lower within-DMN 
connectivity (between hippocampus and ventromedial prefrontal 
cortex) is a consequence of trauma that might contribute to PTSD 
symptoms, while greater activation in SN (amygdala) before 
traumatic exposure could put individuals in higher risk to develop 
PTSD symptoms later [34,35]. If the identification of “high-risk” 
is not feasible, assessment in the early aftermath of trauma (before 
PTSD is established and early in pathophysiologic process) will help 
to capture early emerging symptoms, and to discriminate them from 
transient changes [36]. Importantly, fluctuation in clinical picture 
within first six months following the trauma had been observed by 
us and colleagues [36], suggesting that more stable clinical picture 
might emerge later on. In this case, final assessment in longitudinal 
studies should be conducted within 9-12 months from trauma, or 
sometime after the 1-year period (to avoid 1-year “anniversary” that 
has been shown to be associated with exacerbation of traumatic 
symptoms [37]). 

Finally, understanding of neural correlates of trauma per se 
(distinct from underlying mechanisms of PTSD) not only contributes 
to existing knowledge on resilience and PTSD pathogenesis, but 
might be able to assist in guiding the choice of treatment approaches. 
If consistent patterns of functional connectivity and activation 
associated with trauma exposure can be established, it could have 
a prognostic value, identifying cases when secondary prevention 
could be helpful. If these patterns also lead to better understanding 
of PTSD pathophysiology, this would assist with mechanistic 
understanding of PTSD and the development of mechanism-based 
treatments. In sum, this commentary highlighted the importance 
of studying trauma-exposed healthy controls, to better understand 
effects of trauma alone, as well as in the larger context of the neural 
alterations reported in PTSD patients. Its importance lies not only 
in the greater understanding of symptoms development in PTSD, 
but also in its potential to inform decisions made by researchers and 
clinicians in the field. 
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